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Monte Carlo results for the pure U(3) lattice gauge theory on a 64 lattice are reported. Wdson 
loops and the stnng tensaon are presented The first-order phase transmon an U(3) Is reflected 
qmte clearly an a dlscontmmt~ m the stnng tensaon at/~ = tic The U(I) factor of U(3) ~s extracted 
using the deternunant of the Wdson loops As expected, the U(I) component appears to deconfme 
at the phase transtt~on 

In a previous paper [1], we found a first-order phase transition in pure U(3) gauge 
theory on a four-dimensional space-time lattice. In order to examine the nature of 
this transition in more detail, we study the Wilson loops and, hence, the string 
tension for this gauge group. The U(3) gauge group contains SU(3) and U(1) 
components which should decouple at low temperature. We should then be left with 
the confinement of SU(3) color and the deconfinement of U(I) charges. In a recent 
paper [2] we verified the analogous behavior with the gauge group U(2). This paper 
extends these results to U(3). 

We consider U ( N )  latuce gauge theory in four dimensions. The lattice spacing ts a 
cutoff for small distances and, hence, the inverse lattice spacing is an ultraviolet 
cutoff m momentum space. A matrix U,: ~ U( N ) is associated with each link joining 
the nearest-neighbor lattice sttes, denoted by t and j. We decompose these matrices 
in the form 

U,:=exp(tO,:)~:, 

where U,: is an N × N unitary unimodular matrix of S U ( N )  and 0 is an angle 
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associated with the compact U(I) gauge degree of freedom. We cover the U(N) 
gauge group manifold when the angle/9 covers the interval [0, 2~r/N) and U,,j covers 
SU(N). By traversing a link in the reverse direction, we get the inverse group 
element, i.e., 

Uj, = (U,/) J 

The expectauon value of the observable A[U] is defined by 

1 
(A( f l ) )  Z ( f l ) f ( o ~ j > d U ' J )  A[U]exp(-BS[U])" 

where Z(fl) is the partiuon function defined to normalize the expectation value of 
the operator 1. In the above expression, fl is the inverse temperature which is related 
to the bare coupling constant by fl = 2N/gg and the measure is the normalized 
invariant Haar measure for the U(N) gauge group. We define the action S as a sum 
over all unoriented plaquettes [] of the lattice 

( l  ) S = Z S  o = E  I - ~ R e T r U  o , 

when Up = U, jU~kUklUa is the parallel transporter around the plaquette [] with the 
boundary ij, jk, kl and h. We use periodic boundary conditions throughout our 
calculations and the standard Monte Carlo method of Metropolis et al. [3, 4] to 
equilibrate our lattice. From now on we will speoalize to the case of N = 3, i.e. U(3). 

The Wilson loop [5] on the lattice is defined by the expectation value 

W(I, J )  = ½(ReTr Uc), 

where C is a rectangular contour of dimensions I and J and the product of link 
variables around the contour C is denoted by U c. The leading-order high-tempera- 
ture expansion for the Wilson loop is 

W(I, J) = (~fl)ts × (1 + O ( f l : ) ) ,  (l) 

while the leading-order low-temperature expansion for the average action per 
plaquette is [6] 

( E )  = l - W ( l ,  1) = + o ( , -  2 ) .  (2) 

For rectangular dimensions large compared to the correlation length, the Wilson 
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loop should assume the asymptotic form 
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W(I ,  J) = exp(-A - B. I J -  C. 2(1+J ) ) .  

where, for convenience, we have set the lattice spacing to 1, and for a gtven/3, the 
parameters A, B and C are constants. When the asymptotic form of the above 

equation apphes, the string tension B is easily extracted by calculating the quantity 
[71 

W(1, J ) W ( l -  1 , J -  1)] 
X(I, J)= - In  W(I,J----]--)I,~I--- L ) )  " 
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The leading-order high-temperature expansion for the string tension is 

X(1, J ) =  -in(~/3) "F- 0 ( / ~ 2 ) .  (3) 

We can extract the U(I) component of U(3) by calculating the deternunant [8] for 
each loop considered as a 3 × 3 matrix in U(3) and averaging over all similar loops 
in each configuration to give the average deterrmnants denoted by 

W(l, J ) =  (DET(U¢)>. 
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Fig 3 The Wilson loops W(I,  J) for pure U(3) gauge theory on a 64 lattice as a function of the reverse 
temperature B- The full upward triangles represent (I ,  J )  = (1, 1), the full circles (2, 1), the crosses (3, I), 
the open circles (2, 2), the full downward triangles (3, 2) and the full squares (3, 3) The curves represent 

the leading-order hlgh-temperature expansion of eq (1) 
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From these quanut ies  we form the new logarithmic ratto 
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[ W ( I ,  J ) ~ ' ( I -  1, J -  1) l 
~ ( l , J ) = - i n  _W ( l , j ~ ~) -~(  i - - ~ f ~) ] . 

If at weak coupling the theory does not confine U(I)  charges, then as the loop grows 
this quanti ty should go to zero in the low-temperature region. The leading-order 
high-temperature expansion for the average determinants  is 

W ( I ,  J ) =  [_~/~3 + 0( /~5) ]  'g, (4) 
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Fig 4 (a,b) The funcuon X(I, J) for pure U(3) gauge theory on a 64 lattace as a funcuon of the reverse 
temperature B The full upward tnangles represent (I, J )=  (I, I), the full circles (2,2), the crosses (3,2) 
and the open circles (3,3) Also shown m the diagram is the leading-order hagh-temperature expansion of 

eq (3) 
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Fig 4 (continued) 

and for the quantity y((I, J) is 

~ ( I ,  J ) =  -ln(j-~%/~ 3) + 0( /~5) .  (5) 

In fig. 1 we show the average action per plaquette for pure U(3) gauge theory as a 
function of the inverse temperature fl on a 64 lattice. To obtain these results, we first 
performed 200 iterations through the lattice with 20 Monte Carlo updates per hnk. 

This appears to adequately equilibrate the lattice. We then averaged over the next 

100 iterations through the lattice. We used disordered starts for fl ~< 5.5, mixed phase 
[9] starts for 5.6 < fl < 9.0 and ordered starts for fl >/9.0. Mixed phase runs were 
used in the crossover region in order to avoid problems of supercoohng or superheat- 
mg assocmted with disordered and ordered starts, respecuvely. In the mixed phase 
starts, the fourth axis of the euclidean lattice, the time axis, was dwided in two w~th 
the upper half of the link variables disordered and the lower half ordered. In fig. 1 
the leading-order high- and low-temperature expansions of eqs. (!)  and (2), respec- 
tively, are also shown. In fig. 2 we show some mixed phase runs for the average 
action per plaquette in the vicinity of the cntical reverse temperature and we see 
evidence for a first-order phase transition at the reverse temperature of fl~ = 7.06 + 
0.01. The Wilson loops of size up to 3 × 3 are presented m fig. 3. Eq. (1) accurately 

describes the strong coupling behavior. 
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In fig. 4a we present the quantity X(I, J),  for (I, J ) =  (1, 1), (2,2), (3,2) and (3,3) 
as a function of the inverse temperature/3. Also shown in fig. 4 is the high-tempera- 
ture expansion of eq. (3) which agrees well with the Monte Carlo data for/3 < 7. In 
fig. 4b we show the vicinity of the critical inverse temperature m some detail to 
exhibit the sharp jump, presumably a discontinuity, m the string tension. 

At large fl, the U(1) part of our matrices should decouple and leave an effecuve 
SU(3) theory. In fig. 5 we present the X ratios for both U(3) and SU(3) gauge 
theortes. The U(3) results mimic SU(3) results shifted by approximately l.l units in 
/3. This shift may be calculable perturbatwely. 

In fig. 6 we show the average U(l)  acuon per plaquette ( E )  = l - W(l,  l) as a 
function of the inverse temperature fl on a 6 4 lattice. The leading-order high-temper- 
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Fig 5 A companson of the stnng tension x ( l ,  J )  as a function of the inverse temperature fl for purr 
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ature expansion of eq. (4) is also shown. In fig. 7 some mixed phase runs for (bS) 
near the criucal inverse temperature are shown. The first-order nature of the 

transition is also quite clear in this quantity; this contrasts with the second-order 
transition in the pure U(I)  model [10]. The U(I )  Wilson loops W ( I ,  J )  of size up to 

3 × 3 are shown in fig. 8 with eq. (4) shown for comparison. 
In fig. 9 we show the logarithmic ratios 2(1, J )  for ( I ,  J )  = (1, 1), (2,2), (3,2) and 

(3, 3) as a function of the reverse temperature ft. We also indicate the leading-order 

high-temperature expansion of eq. (5). In the low-temperature region, these quanti- 

ties decrease with loop size faster than the quantities X(I,  J )  shown m fig. 4. Indeed, 
the expectation is that the quantities 2(1, J )  should go to zero in the low-tempera- 
ture region as the loop size increases. Thus, the determmant of the loops would 

appear  not to confine U(I)  charges in the low-temperature region as in the pure U(I)  

gauge theory [10, 1 1]. 
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F~g 8 The Wdson loops ~'(I, J) for the U(I) component of pure U(3) gauge theory, on a 6 4 latuce as a 
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